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SUMMARY

In this article, large eddy simulation is used to simulate homogeneous shear �ows. The spatial dis-
cretization is accomplished by the spectral collocation method and a third-order Runge–Kutta method
is used to integrate the time-dependent terms. For the estimation of the subgrid-scale stress tensor,
the Smagorinsky model, the dynamic model, the scale-similarity model and the mixed model are used.
Their predicting performance for homogeneous shear �ow is compared accordingly. The initial Reynolds
number varies from 33 to 99 and the initial shear number is 2. Evolution of the turbulent kinetic
energy, the growth rate, the anisotropy component and the subgrid-scale dissipation rate is presented.
In addition, the performance of several �lters is examined. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Because of the simplicity of homogeneous shear �ow and its close relation to geophysical
�uid problems, intensive measurements have been carried out in the past decades [1–4].
The experimental data are very useful to validate turbulence models and to determine the
model coe�cients when a new turbulence model is proposed. Due to the limitation of mea-
surement techniques, however, some important statistical variables such as the dissipation
rate of turbulent kinetic energy and higher-order correlation terms are very di�cult to mea-
sure. For some simple cases, isotropic turbulence, for example, the dissipation rate can be
measured using some assumptions. Osborn [5] converted the mean signal shear to the dis-
sipation using the isotropic relation between the shear variance and the dissipation rate. To
some extent, this also limits our understanding of the structure of homogeneous shear �ow.
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With the fast development of computer technology and computational �uid dynamics, it has
become accessible to solve the instantaneous Navier–Stokes equations directly (direct nu-
merical simulation). Using direct numerical simulation any statistical turbulence variable can
be calculated with ease. Rogers and Moin [6] investigated the vorticity structure in a ho-
mogeneous turbulent �ow using direct numerical simulation. Lee et al. [7] carried out direct
numerical simulation for a homogeneous turbulent �ow with a higher shear rate. The structure
of the streaky vorticity and turbulence were studied. Gerz et al. [8] performed direct numerical
simulations for strati�ed and unstrati�ed homogeneous shear �ows. The e�ect of buoyancy on
the evolution of turbulent kinetic energy and other turbulence variables was examined. With
the aid of rapid distortion theory, Rogers [9] investigated the decay of the turbulent kinetic
energy in an unstrati�ed shear �ow. Holt et al. [10] studied the e�ect of Reynolds num-
ber on the evolution of turbulent kinetic energy in a strati�ed homogeneous turbulent �ow.
Jacobitz et al. [11] carried out direct numerical simulations for strati�ed homogeneous shear
�ows. E�ects of Reynolds number, shear number and buoyancy were investigated in detail.
Jacobitz and Sarkar [12] investigated the e�ect of non-vertical shear on turbulent homo-
geneous strati�ed �ows. Kaltenbach et al. [13] performed the �rst large eddy simulation
(LES) for strati�ed homogeneous shear �ows. In their simulations, the Smagorinsky model
was used to estimate the subgrid-scale (SGS) stress tensor. Since it uses a constant coe�-
cient, the Smagorinsky model has some limitation of application. Numerical simulations have
shown that the Smagorinsky coe�cient varies with space and time [14]. In addition, the
Smagorinsky model cannot handle backscatter transfer due to the positive SGS viscosity.
Therefore, more general SGS models such as the dynamic model, the scale-similarity model
and the mixed model should be validated intensively. Compared with DNS, LES is more
economical numerically since it only resolves the motion of the largest scale. Therefore, with
the same grid resolution, LES can deal with �ows with much higher Reynolds number. The
objective of this study is to examine the performance of several SGS models and �lters for
homogeneous shear �ow. Their performance is validated through the comparison of some esti-
mated turbulence variables with the DNS results. This includes the turbulence kinetic energy,
the SGS stresses and the growth rate, etc. Several cases with di�erent initial Reynolds number
are studied to explore its e�ect on the evolution of turbulence for a homogeneous shear �ow.

2. MATHEMATICAL PRELIMINARIES

2.1. Mean transport equations

For an incompressible �ow, the unsteady three-dimensional Navier–Stokes equations and the
transport equation for density can be written as
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Supposing Ui, % and P can be decomposed into a mean part and a �uctuating part, that is

Ui=U ∗
i + ui; %= %∗ + �; P=P∗ + p (4)

It should be noted that this decomposition is di�erent from the time-based Reynolds decompo-
sition. In this decomposition, the local mean part does not change with time when turbulence
is developing. The governing equations can be simpli�ed for �ows with mean shear and con-
stant strati�cation. The �ow considered is homogeneous, with constant shear rates in both
the vertical and the spanwise directions @U ∗

1 =@x2 = S2 = S sin � and @U
∗
1 =@x3 = S3 = S cos �,

respectively. The mean density has a constant vertical strati�cation rate @%∗=@x3 = S�. Then
the mean velocity and density can be rewritten in the general forms as

U ∗
i =(S sin �x2 + S cos �x3)�i1; �∗=�0 + S�x3 (5)

Besides, it is supposed that the mean pressure gradient is balanced by the mean buoyancy
force, i.e.

@P∗

@x3
− g(�0 + S�x3)=0 (6)

This decomposition is introduced into the above equations. Then the following instantaneous
equations can be derived:
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In the LES approach, one gets rid of the scales of wavelength smaller than the grid
mesh, �x, by applying an appropriately chosen low-pass �lter characterized by the func-
tion Ĝ to the �ow to eliminate the �uctuations on SGSs. For any quantity f, the �ltered �eld
is de�ned as

f̃(x; t)=
∫
f(y; t)G̃(x − y) dy=

∫
f(x − y; t)G̃(y) dy (10)

Employing the above �lter to the governing equations, the �ltered equations can be written
as
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+ ũj

@�̃
@xj

+ (S sin �x2 + S cos �x3)
@�̃
@x1

= �
@2�̃
@xj@xj

+
@qj
@xj
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where the SGS stress tensor, �ij, and the SGS �ux, qj, are given by

�ij= ũiũj − ũiuj; qj= �̃ũj − �̃uj (14)

2.2. Reynolds-averaged equations

The transport equation for the Reynolds stresses Rij= ũiũj can be derived from the ith and
jth components of the momentum equation.

dRij
dt

=Pij − Bij +�ij − �ij − �t; ij (15)

where
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@ũi
@xj

+ p̃
@ũj
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�t; ij = �ik S̃jk + �jk S̃ik (20)

The transport equation for the turbulent kinetic energy K = ũiũi=2 can be obtained directly
from the above equation.

d
dt
K =P − B− �− �t (21)

where
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B =
g
�0
ũ3�̃ (23)

� = �
@ũi
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2.3. De�nitions of some parameters

The de�nitions of some parameters used in this study are rewritten here. The characteristic
velocity scale, q, is de�ned by q=

√
2K . The Taylor microscale 	 is used, which is calculated

by

�=
10�K
	2

(26)

The corresponding Reynolds number based on 	 is de�ned as

Re	=
q	
�

(27)

The shear number is de�ned as

sh=
SK
�

(28)

The anisotropy tensor is written as
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ũiũj
ũk ũk

− 1
3
�ij (29)

The non-dimensional growth rate 
 is de�ned as
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(30)

2.4. Numerical approach

In order to use the Fourier models in the spatial discretization, it is necessary to use the period
boundary conditions. Due to the e�ect of mean shear, however, the period boundary conditions
cannot be used directly for these equations. To use strictly period boundary conditions, the
equations should be transformed into a frame of reference that moves with the mean �ow. This
approach was originally developed by Rogallo [15]. The following coordinate transformation
is used:

T = t (31)

Xi = xi − Stx3�i1 (32)

Finally, the transformation leads to the following non-dimensional equations:
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+ Sũ3�i1 =− 1

�0

(
@p̃
@Xi

− ST @p̃
@X1

)

−G�̃�i3 + @�ij@Xj
− ST @�i3

@X1
(34)

where �ij=2�S̃ij + �ij and S̃ij= 1
2((@Ũi=@Xj) + (@Ũj=@Xi)).
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2.5. Subgrid-scale models

In LES, the most important thing is to estimate the SGS stress tensor in Equation (14). When
Boussineq’s hypothesis is adopted, the SGS stress tensor and �ux become

�ij=2�tS̃ij − 1
3�ll�ij; qj= �t

@%̃
@xj

(35)

Here, �t and �t are the subgrid eddy viscosity and the subgrid di�usion coe�cient, respectively.
Usually, �t is estimated from �t via a relation like �t = �t=Prt . Here, Prt is the SGS Prandtl
number. In general, Prt is found to increase under stable strati�cation, which is re�ected in
di�erent SGS modelling approaches. For example, in the Smagorinsky-type SGS model, the
Prandtl number is increased from 0.44 in the free convection limit to 0.7 in neutral condition
to 1.0 in the very stable regime [16]. Since we are interested in strongly stable strati�cation,
we adopted the value of unity in our study. Up to date, various SGS models have been
proposed. The most widely used model is the Smagorinsky model [17] for the SGS viscosity.
It is estimated by

�t =C2S (�x)
2|S̃| (36)

where the shear rate is de�ned by |S̃|=(2S̃ijS̃ij)1=2. In the Smagorinsky model, people use
various values for CS , ranging from 0.06 to 0.25 [18, 19]. However, most researchers often
adopt the value of 0.1. The selection of CS depends on the �ows encountered. In practical
simulations, it is hard to select a reasonable value. To overcome the drawback of choos-
ing CS , Germano et al. [20] developed the dynamic SGS model to calculate the coe�cient
automatically. Lilly [21] modi�ed the formula for CS as

C2S =
1
2
LijMij

MijMij
(37)

where

Mij = �2(�x)2| ˆ̃S| ˆ̃Sij − (�x)2 [|S̃|S̃ij (38)

Lij = Tij − �̂ij= ˆ̃ui ˆ̃uj − ̂̃uiũj (39)

Tij = ˆ̃ui ˆ̃uj − ̂̃uiuj (40)

Here, variables under hat symbol ˆare the �ltered values by the test �lter of larger grid width

��x (for instance �=2). | ˆ̃S| is the �ltered shear rate with the test �lter de�ned by

| ˆ̃S|=
√
2 ˆ̃Sij

ˆ̃Sij (41)

Numerical simulations have showed that the coe�cient CS calculated by this form varies
signi�cantly with space. Sometimes the variance is as high as 10 times. Besides, some big
negative values are frequently encountered, which makes the numerical simulations very unsta-
ble. To avoid negative coe�cients, most people average the coe�cient over the computational
domain, or average the numerators and the denominators, respectively [22, 23]. When aver-
aging is used, the dynamic model is no longer so dynamic locally. In addition, when the
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Smagorinsky model or the dynamic model is used to calculate the SGS stress tensor, it is
found that the predicted stress tensor is very small in comparison with the real SGS stress
tensor. Bardina [24] proposed the scale-similarity model to estimate the SGS stress tensor.
Bardina’s model is written as

�ij= ˆ̃ui ˆ̃uj − ̂̃uiũj (42)

From the analysis of DNS and experimental data, it is found that the scale-similarity model
performs very successfully in predicting the real SGS stresses [24, 25]. However, the scale-
similarity model does not introduce su�cient dissipation to the turbulent kinetic energy. As
a result, some researches combined the scale-similarity model with the Smagorinsky model,
or the dynamic model. This is the so-called mixed model.

�ij=Csim( ˆ̃ui ˆ̃uj − ̂̃uiũj) + 2C2S (�x)2|S̃|S̃ ij (43)

where Csim is the coe�cient with a value around 1.0. Here, CS can be a constant or determined
by the dynamic model.

2.6. Filters

When the dynamic model or the scale-similarity model is used, a test=second �lter is required.
The widely used �lters are the spectral cut-o� �lter, Gaussian �lter and box �lter=top hat �lter.
The general equation for the discrete �lters proposed by Lele [26] is written as

�f̃i−2 + �f̃i−1 + f̃i + �f̃i+1 + �f̃i+2 = afi +
b
2
(fi+1 + fi−1)

+
c
2
(fi+2 + fi−2) +

d
2
(fi+3 + fi−3) (44)

When both the values of � and � are zero, the �lter is explicit. Otherwise, the �lter is
implicit or compact. By using di�erent values, we can get the following common �lters:

f̃i=
1
4(fi−1 + 2fi + fi+1) (45)

where �= �= c=d=0; a= b= 1
2 .

f̃i=
1
6(fi−1 + 4fi + fi+1) (46)

where �= �= c=d=0, a= 2
3 , b=

1
3 .

f̃i=
1
256 (fi−3 − 18fi−2 + 63fi−1 + 164fi + 63fi+1 − 18fi+2 + fi+3) (47)

where �= �=0, a= 5
8 , b=

63
128 , c= − 9

64 , d=
1
128 .

9
20 f̃i−1 + f̃i +

9
20 f̃i+1 =

1
160 (−fi−2 + 76fi−1 + 154fi + 76fi+1 − fi+2) (48)

where �=0, �= 9
20 , a=

77
80 , b=

19
20 , c= − 1

80 , d=0.
In this study, Equations (45)–(48) are called Filters A, B, C and D, respectively. Filters

A and B have second-order truncation accuracy, while, Filters C and D have fourth-order
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Figure 1. Transfer functions for various �lters.

truncation accuracy. Filters A, B and C are the explicit �lters, while Filter D is the compact
�lter. Pro�les of the transfer functions for several �lters are shown in Figure 1. We can
see that Filter D does not �lter enough energy for higher wave numbers. Filter A �lters too
much energy for lower wave numbers. Filter D is close to the cut-o� �lter for lower wave
numbers. For higher wave numbers, however, Filter D cannot �lter enough energy necessary
for LES. Since Filter C has a higher accuracy and is easy to be applied in practice, Filter C is
selected to perform most of the calculations. When the dynamic SGS model is used, we need
to calculate the scaling factor �=�̃=�. When the cut-o� �lter is used, it is straight forward
to calculate � using �=N=kc: When the discrete �lters are used, we also calculate the cut-o�
wave number kc by applying∫ kc

0
[1− g(k)] dk=

∫ N

kc
g(k) dk (49)

In this way, the scaling factor can be determined.

3. A PRIORI TEST

3.1. E�ect of models and �lters
To examine the e�ect of various �lters, DNS is carried out with 963 grid points for the case of
Re	=33. The SGS stresses and the dissipation rate are calculated from the DNS data by using
a �lter. In the meantime, four di�erent SGS models are used to calculate these terms. For
each SGS model three �lters, i.e. the cut-o� �lter, Filter C and Filter D are tested. Moreover,
the SGS stress tensor and the dissipation rate are calculated.
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Figure 2. Evolution of �11 with the cut-o� �lter.

Evolutions of the SGS stress �11 for three �lters are plotted in Figures 2–4. These �gures
show that no matter which �lter is used, the mixed Smagorinsky model or the mixed dynamic
model performs much better than the Smagorinsky model and=or the dynamic model. This is in
agreement with the results of Liu et al. [25] for a turbulent jet. Prediction of the Smagorinsky
model and the dynamic model is very poor. We also can see that �11 calculated from DNS
data using Filter D is smaller than those by Filter C or the cut-o� �lter. By de�nition, the SGS
stress �11 can be expressed as �11 =

∫
E11(k)[1− g2(k)] dk. Here, E11 is the energy spectrum

in the x direction and g(k) is the transfer function of the �lter. From Figure 1 we can see
that [1− g2(k)] of Filter D is the lowest. Therefore, �11 by Filter D is smaller than those by
Filter C and the cut-o� �lter. The evolution of other SGS stresses are also examined. Their
prediction performance is the same as for the SGS stress �11.
Evolution of the SGS dissipation rate for the cut-o� �lter is plotted in Figure 5. Prediction

of the Smagorinsky model is closer to the result calculated from the DNS data. Prediction
by the dynamic model is smaller than the DNS result. Both the mixed Smagorinsky model
and the mixed dynamic model over-predict the SGS dissipation rate. It should be noted that
when the cut-o� �lter is used, we should select two cut-o� wave numbers for the �ltering,
one for the basic �lter and the other for the test �lter. In Figure 5, the cut-o� wave number
for the basic �lter is N=3 and it is N=4 for the test �lter. If the two cut-o� wave numbers
are set the same, the dissipation introduced by the scale-similarity part is very small, close to
zero. Other researchers frequently reported that the SGS dissipation rate is very small when
the cut-o� �lter is used. For example Liu et al. [25] did not recommend to use the cut-o�
�lter when the mixed model is used.
Evolution of the SGS dissipation rate for Filter C is shown in Figure 6. Predictions by the

Smagorinsky model and the dynamic model are smaller than the DNS data. However, the SGS
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Figure 3. Evolution of �11 with Filter C.
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Figure 4. Evolution of �11 with Filter D.

dissipation rate is predicted reasonably by the mixed Smagorinsky model at the beginning. At
later times, both the mixed Smagorinsky model and the mixed dynamic model perform better
than the other two models. Evolution of the SGS dissipation rate for Filter D is shown in
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Figure 5. Evolution of SGS dissipation rate with the cut-o� �lter.
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Figure 6. Evolution of SGS dissipation rate with Filter C.

Figure 7. In this case, the Smagorinsky model and the mixed Smagorinsky model over-predict
�t . The dynamic model under-predicts the dissipation rate. Prediction by the mixed dynamic
model is very close to the DNS data. From the above results, it is seen that the overall
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Figure 7. Evolution of SGS dissipation rate with Filter D.

prediction performance of the mixed dynamic model and the mixed Smagorinsky model is
better than the other two SGS models. Due to the reason mentioned above, the cut-o� �lter
is not recommended when the mixed model is used. As Filter D is an implicit �lter, the
tri-diagonal matrix algorithm will be used to calculate the values in each direction, which is
very time consuming. Therefore, Filter C is recommended for use with the mixed dynamic
model in the following simulations.

4. COMPUTATIONAL RESULTS

4.1. E�ect of subgrid-scale models

To investigate the e�ect of various SGS models, the Smagorinsky model, the scale-similarity
model, the dynamic model, the mixed dynamic model and the mixed Smagorinsky model
are tested. For the mixed model, both the Smagorinsky model and the dynamic model are
used to introduce additional dissipation to the turbulent kinetic energy. The Taylor mircoscale
Reynolds number Re	 is 33. For LES, the grid size should be several times bigger than the
Kolmogorov length scale since the smallest scale is not resolved. In the simulation, the ratio
of the grid size (0.0654) to the Kolmogorov length scale (0.0132) is 4.95. The shear number
SK=� is 2. In the Smagorinsky model, the Smagorinsky parameter CS is chosen as 0.1. In
the mixed Smagorinsky model, CS is chosen as 0.08. In the mixed dynamic model, CS is
calculated using the dynamic SGS model. In the mixed model, Csim is chosen as 0.9. Filter C
is used in the dynamic SGS model. The scaling factor � in the dynamic SGS model is 2.21
in the simulations. St is the non-dimensional time.
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Figure 8. Evolution of the turbulent kinetic energy for the case of Re	=33.

Evolution of the turbulent kinetic energy is plotted in Figure 8. This �gure shows that K de-
cays �rst and then grows. This is because the initial condition is isotropic and
the initial production of the turbulent kinetic energy is zero. It is found that K predicted
by the mixed dynamic model and the mixed Smagorinsky model decays faster than those by
the dynamic model and the Smagorinsky model at the beginning. The budget of the turbulent
kinetic energy for the mixed dynamic model is shown in Figure 9. This �gure shows that
the dissipation rate of turbulent kinetic energy decreases �rst, then begins to grow gradually.
The production term grows gradually from the isotropic initial state. The sign of dK=dt is
negative at the beginning since the turbulence decays �rst. When St reaches the value around
2.3, its sign changes to positive. This means that the production term at this time is already
bigger than the total of the turbulent dissipation rate and the SGS dissipation rate. The value
of dK=dt is in good agreement with the value of P − � − �t . Although not shown here, the
budgets of the turbulent kinetic energy by the other three models show the same tendency
as for the mixed dynamic model. One signi�cant di�erence is the evolution of the SGS dis-
sipation rate by four SGS models as shown in Figure 10. The �gure also shows that the
SGS dissipation rate �t introduced by the dynamic model is smaller than that introduced by
the Smagorinsky model. The value of �t calculated by both the mixed dynamic model and
the mixed Smagorinsky model are larger than that by the dynamic model or the Smagorin-
sky model. The dynamic model introduces the least SGS dissipation rate of turbulent kinetic
energy among the four models.
The evolution of CS calculated by the dynamic SGS model is shown in Figure 11. The

�gure shows that CS decays all the time from the beginning. At the beginning, the value
of CS is around 0.066. This value is smaller than the Smagorinsky coe�cient 0.1. However,
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Figure 9. Budget of K equation by the mixed dynamic model.
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Figure 10. Evolution of �t by four SGS models.

it is close to the value 0.06 reported by Piomelli [14]. Therefore, CS is not only related to
space but also to time. Evolution of the SGS viscosity for the case of Re	=33 is plotted in
Figure 12. At the initial, the ratio is about 10.5% for the dynamic model, while it is 15.2% for
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Figure 11. Evolution of CS by the dynamic model.
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Figure 12. Evolution of �t=� by the dynamic model.

the Smagorinsky model. At St=8, the ratio of �t=� is about 3.5% for the Dynamic model and
9.4% for the Smagorinsky model. Therefore, the SGS viscosity by the Smagorinsky model is
usually higher than that by the dynamic model.
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Figure 13. Evolution of K for three initial Reynolds numbers.

4.2. E�ect of Reynolds number

The e�ect of Reynolds number is examined in this section. The Reynolds number Re	 ranges
from 33 to 99. The shear number is kept as 2. For the case of Re	=33, a grid number of
963 is used. For other cases, 1283 grid points are used. The ratio of the grid size to the
Kolmogorov length scale is 4.95, 5.44 and 6.66 for Re	=33, 66 and 99, respectively. The
mixed dynamic model is used in all the simulations.
Evolution of the turbulent kinetic energy for three initial Reynolds numbers is plotted in

Figure 13. For three initial Reynolds numbers, K decays �rst and then grows. The evolution of
the Reynolds number is shown in Figure 14. It is similar to the evolution of K for three initial
Reynolds numbers. With the increase of the Reynolds number, the initial decaying increases.
Evolution of the growth rates is shown in Figure 15. At the initial state, the decaying rate
increases with the increase of the Reynolds number. Then 
 becomes positive, which means
K begins to grow. At the �nal state, 
 reaches a maximum and it does not change very much
for di�erent Reynolds number. Lohse [27] showed that for Re	¿50, the growth rate should
reach an asymptotic value independent of the Reynolds number. Figure 14 shows that the
Reynolds numbers at the �nal state of the simulations lie in the range 62¡Re	¡116, therefore,
the growth rate is independent of the Reynolds number. Figure 16 shows the evolution of
the anisotropy component b13 with three initial Reynolds numbers. The absolute value of
b13 increases from the initial isotropic state. Finally, b13 is going to reach an asymptotic
value. Figure 17 shows the evolution of the ratio P=�. With increasing Reynolds number, P=�
decreases at the initial state and �nally reaches a value not so dependent on the Reynolds
number. It should be pointed out that the tendency of reaching the asymptotic values for b13
and P=� is not so clear since we performed the computations up to St=8. We should have
carried out the computations longer.
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Figure 14. Evolution of the Reynolds numbers.
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Figure 15. Evolution of the growing rate for three initial Reynolds numbers.

Figure 18 shows evolution of the ratio �t=�. With the increase in Reynolds number, the
ratio becomes higher and higher. At the initial state, the ratio is very high and after St=4,
the ratio becomes very �at for the three cases with di�erent Reynolds numbers.
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Figure 16. Evolution of b13 for three initial Reynolds numbers.
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Figure 17. Evolution of P=� for three initial Reynolds numbers.
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Figure 18. Evolution of �t=� for three initial Reynolds numbers.

5. CONCLUSIONS

In this study, large eddy simulations were carried out for the homogeneous shear �ow. Evolu-
tions of the turbulent kinetic energy, the anisotropy components, the growth rate, the subgrid-
scale viscosity, the subgrid-scale dissipation rate and the budgets of the turbulent kinetic
energy equation were presented. The performances of several �lters and subgrid-scale models
were compared with each other. From the a priori test, it is found that the mixed dynamic
model and the mixed Smagorinsky model have better overall performance in the prediction of
the subgrid-scale stresses and the subgrid-scale dissipation rate than the dynamic model and
the Smagorinsky model. When Filter C was used, the mixed Smagorinsky model performs the
best among the four models to predict the dissipation rate. When Filter D was used, however,
the mixed dynamic model performs the best among the four models in the calculation of the
subgrid-scale dissipation rate. From the simulations, it was con�rmed that the Smagorinsky
parameter CS is a function of time and space. Therefore, we recommend the use of the mixed
dynamic mode rather than the mixed Smagorinsky model, since the mixed dynamic model
uses a variable value of CS rather than a �xed value of 0.1 as used in the Smagorinsky model.
It was also found that the growth rate 
 is independent of the Reynolds number when an

asymptotic state is reached. The anisotropy component b13 and the ratio P=� need a longer time
to reach an asymptotic state. The subgrid-scale dissipation rate increases with the increase of
the Reynolds number.

NOMENCLATURE

bij anisotropy tensor
Csim coe�cient
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CS coe�cient
g gravity acceleration
G̃ �lter function
kc cut-o� wave number
K turbulent kinetic energy
p �uctuating pressure
P total pressure or production term
P∗ mean pressure
Prt turbulent Prandtl number
q characteristic velocity scale
Rij Reynolds stresses
Re	 Taylor Reynolds number
sh shear number
S mean shear rate
Sij shear rate tensor
S� vertical strati�cation
ui �uctuating velocity components
Ui total velocity components
U ∗
i mean velocity components
xi Cartesian coordinate

Greek letters

� scaling coe�cient
�t subgrid-scale thermal di�usivity
�ij total shear stress tensor
�x grid size
� dissipation rate of turbulent kinetic energy
�t subgrid-scale dissipation rate
� Kolmogorov length scale
� strati�cation angle
	 Taylor length scale
� dynamic molecular viscosity
� kinematic molecular viscosity
�t subgrid-scale eddy viscosity
� �uctuating density
% total density
%∗ mean density
�ij subgrid-scale stress tensor
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